
Safety and efficacy of JSKN003 in Patients with advanced/metastatic solid tumors: A first-in-human, dose-escalation and expansion, multicenter, open-label, phase I study Claire Beecroft¹, Bo Gao², Andrew Parsonson², John Park³, Kate Wilkinson⁴, Karl Zhang⁵, Xiangyun Yan⁵, Yuan Lv⁵

1.Hollywood Private Hospital, Perth, Australia; 2.Blacktown and Westmead Hospital, Sydney, Australia; 3.Macquarie University Hospital, Sydney, Australia; 4.Liverpool Hospital, Liverpool, Australia; 5.Alphamab Oncology, Suzhou, China

BACKGROUND

- JSKN003 is a bispecific HER2-directed antibody-drug conjugate (ADC) conjugated to a TOP1i via a dibenzocyclooctyne tetrapeptide linker on the glycan of a humanized bispecific antibody.
- Pre-clinical studies showed that JSKN003 had a good serum stability and strong anti-tumor activity.
- Here we reported the dose-escalation results from JSKN003-101, a first-inhuman phase I study to evaluate the efficacy and safety of JSKN003 in patients with advanced/metastatic solid tumors.

Figure 1 Structure of JSKN003

METHODS

- JSKN003-101 is a first-in-human, dose-escalation and -expansion study in pts with advanced/metastatic solid tumors (Figure 2).
- Dose-escalation part adopts BOIN design across 7 dose levels (1.0, 2.1, 4.2, 5.2, 6.3, 7.3, and 8.4 mg/kg, Q3W).
- The objectives were safety, tolerability, maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D), pharmacokinetics (PK), and preliminary antitumor activity.
- The cut-off date was Mar 15, 2024.

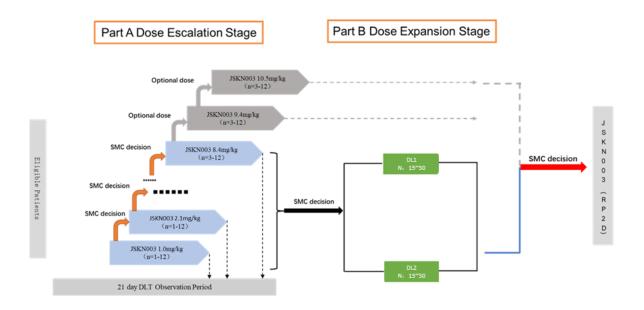


Figure 2 Study Design

RESULTS

Patients

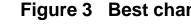
- As of Mar 15, 2024, 32 pts were enrolled and received JSKN003 during the dose-escalation part. 62.5% of patients had \geq 3 prior lines of systemic treatment.
- The median duration of treatment was 20.4 (range, 6-56) weeks, and 8 pts (25.0%) remain on treatment.

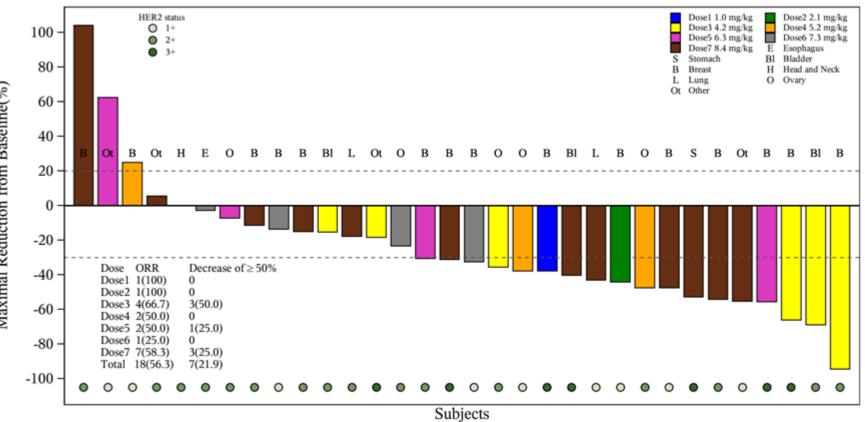
Safety

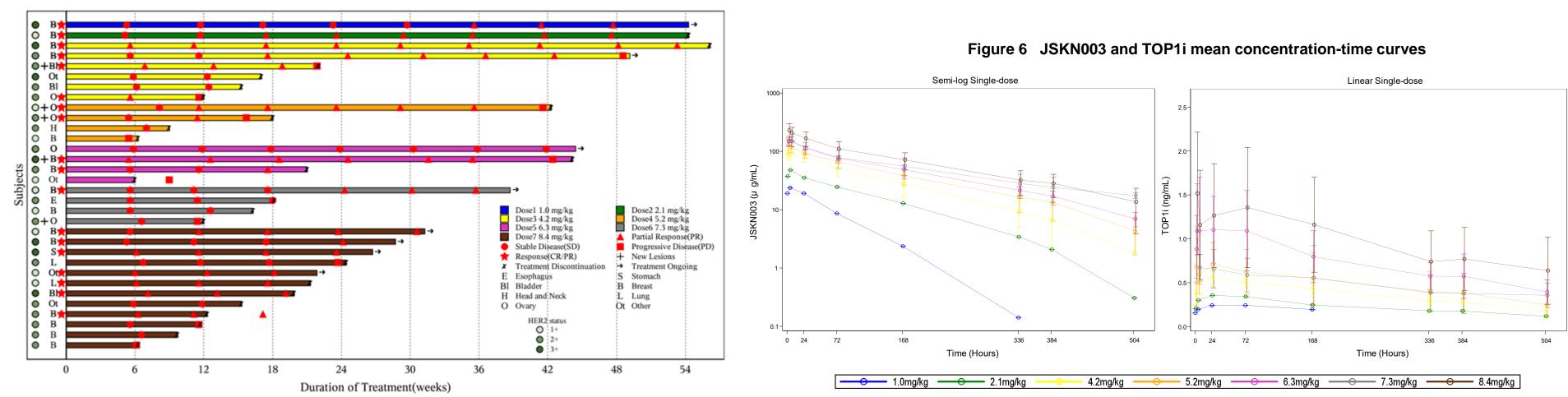
- All the patients had experienced treatment-emerged adverse events. Treatment-related adverse events (TRAEs) occurred in 27 pts (84.4%) and 4 pts (12.5%) experienced grade 3 TRAE, which was 1 pt in 4.2mg/kg (anemia, diarrhea), 1 pt in 7.3mg/kg (fatigue), and 2 pts in 8.4mg/kg (diarrhea, fatigue)
- The incidence of ILD was 3.1% (1/32, occurred in 7.3 mg/kg).
- All the subjects had finished DLT observation, and no DLT events were identified yet, and no TRAE led to death or treatment discontinuation.
- MTD has not been reached in 8.4 mg/kg.

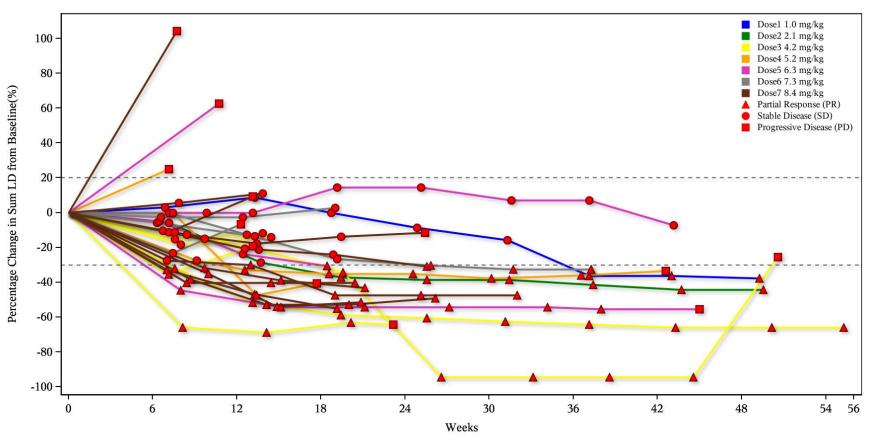
Table 1 Demographics & Baseline Characteristics									
Dose	1.0 mg/kg	2.1 mg/kg	4.2 mg/kg	5.2 mg/kg	6.3 mg/kg	7.3 mg/kg	8.4 mg/kg	Total	
Ν	1	1	6	4	4	4	12	32	
Median age (years)	60	54	70	60	70	58	65	65	
Range			57 – 73	51 – 67	42 – 73	47 – 77	30 – 79	30 – 79	
Gender, male/female	0/1	0/1	2/4	1/3	0/4	1/3	1/11	5/27	
Race									
Asian	0	0	1 (16.7)	1 (25.0)	1 (25.0)	1 (25.0)	2 (16.7)	6 (18.8)	
White	1 (100)	1 (100)	5 (83.3)	3 (75.0)	3 (75.0)	3 (75.0)	10 (83.3)	26 (81.3)	
ECOG PS, n (%)									
0	1 (100)	1 (100)	3 (50.0)	4 (100)	2 (50.0)	0	4 (33.3)	15 (46.9)	
1	0	0	2 (33.3)	0	2 (50.0)	3 (75.0)	8 (66.7)	15 (46.9)	
2	0	0	1 (16.7)	0	0	1 (25.0)	0	2 (6.3)	
HER2 (IHC), n (%)									
1+	0	1 (100)	0	2 (50.0)	1 (25.0)	2 (50.0)	3 (25.0)	9 (28.1)	
2+	0	0	4 (66.7)	2 (50.0)	2 (50.0)	2 (50.0)	6 (50.0)	16 (50.0)	
3+	1 (100)	0	2 (33.3)	0	1 (25.0)	0	3 (25.0)	7 (21.9)	
Site of Primary Cancer, n(%)									
Breast	1 (100)	1 (100)	2 (33.3)	1 (25.0)	2 (50.0)	2 (50.0)	6 (50.0)	15 (46.9)	
Ovary	0	0	1 (16.7)	2 (50.0)	1 (25.0)	1 (25.0)	0	5 (15.6)	
Bladder	0	0	2 (33.3)	0	0	0	1 (8.3)	3 (9.4)	
Lung	0	0	0	0	0	0	2 (16.7)	2 (6.3)	
Esophagus	0	0	0	0	0	1 (25.0)	0	1 (3.1)	
Stomach	0	0	0	0	0	0	1 (8.3)	1 (3.1)	
Head and Neck	0	0	0	1 (25.0)	0	0	0	1 (3.1)	
Other	0	0	1 (16.7)	0	1 (25.0)	0	2 (16.7)	4 (12.5)	
Prior Lines of Therapy, n (%)									
1 Line	0	0	0	1 (25.0)	1 (25.0)	1 (25.0)	2 (16.7)	5 (15.6)	
2 Line	0	0	3 (50.0)	0	0	1 (25.0)	3 (25.0)	7 (21.9)	
≥3 Line	1 (100)	1 (100)	3 (50.0)	3 (75.0)	3 (75.0)	2 (50.0)	7 (58.3)	20 (62.5)	

	1.0 mg/kg N=1	2.1 mg/kg N=1	4.2 mg/kg N=6	5.2 mg/kg N=4	6.3 mg/kg N=4	7.3 mg/kg N=4	8.4 mg/kg N=12	Total N=32
TEAE	1 (100)	1 (100)	6 (100)	4 (100)	4 (100)	4 (100)	12 (100)	32 (100)
TRAE	1 (100)	1 (100)	5 (83.3)	3 (75.0)	3 (75.0)	4 (100)	10 (83.3)	27 (84.4)
Grade ≥ 3 TEAE	0	1 (100)	4 (66.7)	1 (25.0)	2 (50.0)	1 (25.0)	5 (41.7)	14 (43.8)
Grade ≥3 TRAE	0	0	1 (16.7)	0	0	1 (25.0)	2 (16.7)	4 (12.5)
SAE	0	0	2 (33.3)	0	2 (50.0)	1 (25.0)	3 (25.0)	8 (25.0)
Treatment-related SAE	0	0	0	0	0	0	1 (8.3)	1 (3.1)
TEAE Leading to Discontinuation	0	0	1 (16.7)	0	1 (25.0)	1 (25.0)	0	3 (9.4)


РТ	1.0 mg/kg N=1	2.1 mg/kg N=1	4.2 mg/kg N=6	5.2 mg/kg N=4	6.3 mg/kg N=4	7.3 mg/kg N=4	8.4 mg/kg N=12	Total N=32
Diarrhea	1 (100)	1 (100)	3 (50.0)	3 (75.0)	3 (75.0)	2 (50.0)	7 (58.3)	20 (62.5)
Nausea	0	1 (100)	2 (33.3)	2 (50.0)	2 (50.0)	3 (75.0)	7 (58.3)	17 (53.1)
Fatigue	0	0	1 (16.7)	0	0	2 (50.0)	4 (33.3)	7 (21.9)
Vomiting	0	0	0	1 (25.0)	2 (50.0)	2 (50.0)	2 (16.7)	7 (21.9)
Decreased appetite	0	0	0	1 (25.0)	2 (50.0)	0	3 (25.0)	6 (18.8)
Abdominal pain	0	0	1 (16.7)	0	1 (25.0)	0	2 (16.7)	4 (12.5)
Lethargy	0	0	0	0	0	0	4 (33.3)	4 (12.5)
Alopecia	0	1 (100)	1 (16.7)	0	0	0	2 (16.7)	4 (12.5)


Table 2Safety Overview


Table 3 Most Commonly Reported TRAEs (≥10%)


Efficacy

- 90.6% (95%CI: 75.0%, 98.0%), respectively.
- The ORR in pts with IHC 1+, 2+ and 3+ was 66.7% (6/9), 37.5% (6/16), and 85.7% (6/7), respectively.
- respectively

• The objective response rate (ORR) and disease control rate (DCR) was 56.3% (95%CI: 37.7%, 73.6%) and

• As for the efficacy of the HER2+ BC and HER2-low BC, the ORR was 100% (5/5) and 50.0% (5/10),

Figure 3 Best change in target lesion from baseline by RECIST 1.1

Figure 4 Individual response by duration of treatment

Figure 5 Change in tumor size of target lesion overtime

Pharmacokinetics

- Following a single dose, exposures (C_{max} and AUC) of JSKN003 and released TOP1i increased proportionally over a dose range of 1 to 8.4 mg/kg. The mean half-life of JSKN003 is approximately 5 days for 6.3 mg/kg.
- Following multiple doses, the PK profile of JSKN003 and released TOP1i were similar with single dose, and the mean accumulation ratio following 6.3 mg/kg was approximately 1.3-fold for JSKN003.
- The exposure of released payload was significantly lower than JSKN003 ADC, demonstrating the stability of JSKN003 in circulation.

Table 4 PK Parameters after single dose

	PK Parameters	1.0 mg/kg N=1	2.1 mg/kg N=1	4.2 mg/kg N=6	5.2 mg/kg N=4	6.3 mg/kg N=4	7.3 mg/kg N=3	8.4 mg/kg N=12
	T _{max} (day)	0.23 (0.23,0.23)	0.22 (0.22,0.22)	0.23 (0.23,1.07)	0.16 (0.08,0.23)	0.15 (0.06,0.29)	0.09 (0.07,0.22)	0.18 (0.06,0.23)
	t _{1/2} (day)	1.67	1.95	3.37±1.12	4.63±0.91	5.32 ± 0.53	7.03 ± 0.73	5.94±1.18
JSKN003	C _{max} (μg/mL)	23.69	47.77	91.88±18.23	124.14±28.61	155.00 ± 26.86	151.03±29.00	223.84±71.19
	AUC _{0-t} (µg*day/mL)	84.90	233.24	534.75±158.57	705.48±199.67	896.46±129.46	1011.14±362.49	1342.71±406.50
	CL (mL/day/kg)	11.68	8.95	8.33±2.64	7.38±2.28	6.75 ± 0.96	7.12±3.45	6.38±2.59
	V _{ss} (mL/kg)	28.16	25.16	37.27±5.52	47.20±5.45	51.66±6.57	70.41 ± 28.45	51.16±10.76
TOP1i	T _{max} (day)	4.04 (4.04,4.04)	1.06 (1.06,1.06)	1.07 (0.22,7.03)	0.56 (0.08,1.10)	0.26 (0.08,1.09)	0.07 (0.06,0.10)	0.19 (0.06,3.01)
	t _{1/2} (day)	-	12.59	12.92±8.64	13.83 ± 4.53	11.59 ± 2.39	16.48±3.09	15.80 ± 2.81
	C _{max} (ng/ml)	0.24	0.36	0.58 ± 0.075	$0.76 {\pm} 0.31$	1.21 ± 0.53	1.09 ± 0.54	1.64±0.71
	AUC _{0-t} (ng*day/mL)	1.82	4.73	7.95±1.21	10.16±5.08	15.47±5.88	9.71±5.23	22.43±10.20
	CL (L/day/kg)	-	305.68	394.92±122.87	370.75 ± 99.53	317.14±113.64	517.92±258.17	364.95±244.57
	V _{ss} (L/kg)	-	5553.99	6342.69±1665.20	7665.27±3616.39	5095.34±1437.95	12616.80±6953.79	7847.68±4176.92

 T_{max} is presented as median(min,max); other parameters are presented as mean \pm SD; - means not calculated

CONCLUSIONS

- JSKN003 was well tolerated with encouraging preliminary antitumor activity in heavily pretreated pts with advanced/metastatic solid tumors.
- As of the cut-off date, all the subject had finished DLT observation period, and no DLT was observed, MTD has not been reached yet.
- JSKN003 exhibited a favorable tolerability and safety profile, with very low occurrence of hemotoxicity and ILD (1/32, grade 2).

CONFLICT OF INTEREST

• The authors have no conflicts of interest.

Abstract ID: CT179